A. Parizad, H.R. Baghaee, A. Yazdani, G.B. Gharehpetian
IEEE Power and Energy Conference at Illinois (PECI) (pp. 1-6). IEEE.
Publication year: 2018


Power distribution systems are developing continuously and, consequently, the available short-circuit levels may exceed the ratings of the switchgear. One of the efficient methods of alleviating short-circuit currents is the reconfiguration. Network reconfiguration refers to the opening and closing of switches in a distribution system so that the network topology and, consequently, power flow from the substation to the consumers are changed. Distribution feeder reconfiguration (DFR) is a complex nonlinear combinatorial problem since the status of the switches is non-differentiable. This paper presents a new efficient algorithm for DFR, based on particle swarm optimization (PSO) algorithm, in order to minimize the short-circuit level. The numerical results of the proposed algorithm tested on the IEEE 83-Bus distribution system model reveals the feasibility, authenticity, and efficiency of the proposed PSO-based optimal reconfiguration algorithm.